Devoir surveillé de Mathématiques n 1 (TS)

Exercice 0.1 Voici la somme des premiers termes d'une suite géométrique, donner le résultat de la somme $1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \ldots + \frac{512}{19683}$ sous forme d'une fraction irréductible :

Exercice 0.2 Soit la suite (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = \frac{2^n}{4^{2n}}$.

- 1. Montrer que la suite (w_n) est géométrique, donner la raison.
- 2. Etudier la monotonie de (w_n) .

Exercice 0.3 Soit la fonction f définie sur $\mathbb{R} - \{-3\}$ par $f(x) = \frac{x+1}{x+3}$.

- 1. Etudier les variations de f.
- 2. En déduire un encadrement de f(x) lorsque $x \in [0,1]$.
- 3. Soit (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = \frac{u_n + 1}{u_n + 3}$. Démontrer que pour tout $n \in \mathbb{N}$ $0 \le u_n \le 1$.

Exercice 0.4 Soit (u_n) la suite définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = 2u_n - 1$. Montrer en utilisant un **raisonnement par récurrence** que pour tout entier naturel n on a:

$$u_n = 2^{n+1} + 1.$$

Exercice 0.5 Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = 8$ et $u_{n+1} = \frac{2}{5}u_n + 3$. Démontrer en utilisant un **raisonnement par récurrence** que pour tout $n \in \mathbb{N}$ on a:

$$u_n = 3 \times \left(\frac{2}{5}\right)^n + 5.$$

Exercice 0.6 Le premier janvier 2000, un client a placé 3000 euros à intérêts composés au taux annuel de 2,5 %.

On note C_n le capital du client au 1^{er} janvier de l'année 2000 + n, où n est un entier naturel.

- 1. Calculer C_1 et C_2 . Arrondir les résultats au centime d'euro.
- 2. Exprimer C_{n+1} en fonction de C_n . En déduire que, pour tout nombre entier naturel n, on a la relation :

$$C_n = 3000 \times 1,025^n$$
.