GÉOMÉTRIE VECTORIELLE

I Translations et vecteurs.

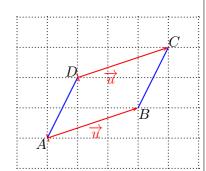
Definition I.1 \blacktriangleright Un point C est l'image d'un point D par la <u>translation</u> qui transforme A en B lorsque le quadrilatère ABCD est un parallélogramme.

 \blacktriangleright On dit alors que C est l'image du point D par la translation de <u>vecteur</u> \overrightarrow{AB} .

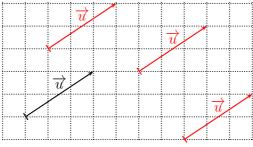
Soit la translation de vecteur \overrightarrow{AB} transformant D en C. Nous avons les propriétés suivantes:

- (AB) et (DC) sont parallèles (même direction),
- AB et DC sont de même longueur,
- \overrightarrow{AB} et \overrightarrow{DC} vont dans le même sens.

Les vecteurs seront souvent notés \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} ...



Remarque(s) I.1 Le vecteur \overrightarrow{u} n'est pas fixe, on peut le dessiner n'importe où sur une feuille



II Égalité de deux vecteurs.

Definition II.1 Soit quatre points A, B, C et D du plan.

les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont $\underline{\acute{e}gaux}$ signifie que D est l'image de C par la translation de vecteur \overrightarrow{AB} . On note $\overrightarrow{AB} = \overrightarrow{CD}$.

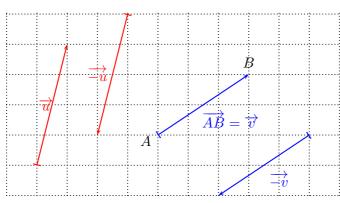
 $\textbf{Proposition II.1} \ \textit{Soit quatre points A, B, C et D du plan:}$

- ▶ les vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont $\underline{\acute{e}gaux}$ si et seulement si le quadrilatère ABCD est un parallélogramme (éventuellement aplati).
- ➤ les vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont $\underline{\acute{e}gaux}$ si et seulement si les segments [AC] et [BD] ont $m\^{e}me$ milieu.

III Opposé d'un vecteur

Definition III.1 Quels que soient les points A et B, le vecteur \overrightarrow{BA} est appelé <u>vecteur opposé</u> au vecteur \overrightarrow{AB} .

 $Si \overrightarrow{u} = \overrightarrow{AB}, \ alors - \overrightarrow{u} = \overrightarrow{BA}.$



IV Somme de deux vecteurs.

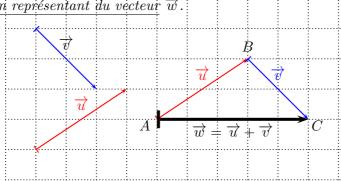
Definition IV.1 Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

La somme des vecteurs \overrightarrow{u} et \overrightarrow{v} , notée $\overrightarrow{u}+\overrightarrow{v}$, est le vecteur associée à la translation résultant de l'enchaînement des translations de vecteur \overrightarrow{u} et de vecteur \overrightarrow{v} .

Méthode(s) IV.1 Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs, on construit le vecteur $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ de la façon suivante :

Soit A un point du plan, on trace le représentant de \overrightarrow{u} d'origine A: il a pour extrémité B, puis on trace le représentant de \overrightarrow{v} d'origine B: il a pour extrémité C.

Le vecteur \overrightarrow{AC} est un représentant du vecteur \overrightarrow{w} .



Definition IV.2 Le vecteur nul $\overrightarrow{0}$.

- $\overrightarrow{AB} = \overrightarrow{0}$ si et seulement si A = B,
- Si on fixe un point O, alors pour tout vecteur \overrightarrow{u} , il existe un unique point M vérifiant $\overrightarrow{u} = \overrightarrow{OM}$.

2

Proposition IV.1

- ➤ Relation de Chasles: Pour tous points A, B et C du plan, on $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- ightharpoonup Nous avons la relation $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ si et seulement si ABCD est un parallélogramme.

Quels que soient les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} du plan, on a :

- $\blacklozenge (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}),$
- $\blacklozenge \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}.$

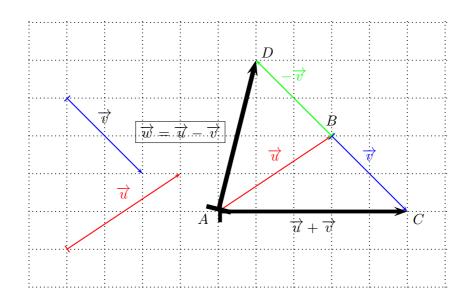
V Différence de deux vecteurs.

Definition V.1 Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs. La différence des vecteurs \overrightarrow{u} et \overrightarrow{v} , notée $\boxed{\overrightarrow{u} - \overrightarrow{v}}$, est le vecteur égal à la somme $\overrightarrow{u} + (-\overrightarrow{v})$.

Méthode(s) V.1 Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs, on construit le vecteur $\overrightarrow{w} = \overrightarrow{u} - \overrightarrow{v}$ de la façon suivante :

Soit A un point du plan, on trace le représentant de \overrightarrow{u} d'origine A: il a pour extrémité B, puis on trace le représentant de $-\overrightarrow{v}$ d'origine B: il a pour extrémité D.

Le vecteur \overrightarrow{AD} est un représentant du vecteur \overrightarrow{w} .



Remarque(s) V.1 Bien sur nous avons la relation:

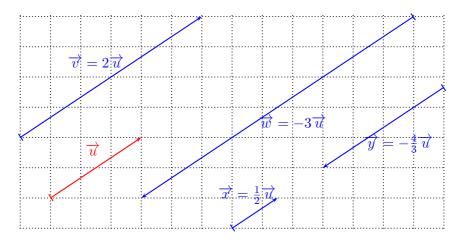
$$\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}.$$

3

VI Multiplication d'un vecteur par un nombre réel.

Definition VI.1 Soit $\overrightarrow{u} = \overrightarrow{AB}$ un vecteur <u>non nul</u> et \boxed{k} un réel non nul, on définit le vecteur $\overrightarrow{v} = k\overrightarrow{u} = \overrightarrow{AC}$ par :

- ➤ A, B et C sont alignés,
- \blacktriangleright si k > 0, AC = kAB et B et C sont du même côté par rapport à A,
- ightharpoonup Si k < 0, AC = -kAB et B et C sont de part et d'autre de A.
- ightharpoonup $Si \ \overrightarrow{u} = 0 \ ou \ \boxed{k=0} \ alors \ \overrightarrow{v} = \overrightarrow{0}$



Proposition VI.1 Quels que soient les vecteurs \overrightarrow{u} , \overrightarrow{v} et les réels k et l, on a:

- \bullet $k\overrightarrow{u} = \overrightarrow{0} \iff k = 0 \text{ ou } \overrightarrow{u} = \overrightarrow{0}$

VII Colinéarité de deux vecteurs

Definition VII.1 Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont <u>colinéaires</u> s'il existe un réel k non nul tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Proposition VII.1 \blacklozenge Trois points A, B et C sont <u>alignés</u> si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont <u>colinéaires</u>,

♦ deux droites (AB) et (CD) sont <u>parallèles</u> si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont <u>colinéaires</u>.