Calculez en intégrant par partie l'intégrale suivante:
$\displaystyle\int_{ -\dfrac{1}{2}\pi}^{+3\pi}( \dfrac{6}{5}x +\dfrac{7}{3})\sin(x)dx $Ta réponse peut se mettre sous la forme=| $\displaystyle\int_a^bf(x)dx=$ | $\bigg($ | | $\bigg)$ | $\times\pi$ | $+\bigg($ | | $\bigg)$ |
Calculez en intégrant par partie l'intégrale suivante:
$\displaystyle\int_{-7\pi}^{ +\dfrac{4}{3}\pi}(-9x-1)\sin(x)dx $Ta réponse peut se mettre sous la forme=| $\displaystyle\int_a^bf(x)dx=$ | $\bigg($ | | $\bigg)$ | $\times\pi$ | $+\bigg($ | | $\bigg)$ |
Calculez en intégrant par partie l'intégrale suivante:
$\displaystyle\int_{ -\dfrac{7}{2}\pi}^{+7\pi}(-x-5)\cos(x)dx $Ta réponse peut se mettre sous la forme=| $\displaystyle\int_a^bf(x)dx=$ | $\bigg($ | | $\bigg)$ | $\times\pi$ | $+\bigg($ | | $\bigg)$ |
Calculez en intégrant par partie l'intégrale suivante:
$\displaystyle\int_{ -\dfrac{1}{3}\pi}^{+3\pi}( -\dfrac{4}{3}x +\dfrac{1}{3})\sin(x)dx $Ta réponse peut se mettre sous la forme=| $\displaystyle\int_a^bf(x)dx=$ | $\bigg($ | | $\bigg)$ | $\times\pi$ | $+\bigg($ | | $\bigg)$ |